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Prevalent multimodal models, like CLIP, have shown outstanding performance on
multimodal tasks. However, since CLIP is only trained on image-text contrastive loss, it
suffers from poor unimodal representation.

With strengthened unimodal representation, we hypothesize the model can have a better

performance on multimodal tasks
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Motivations

e How to gain a better unimodal representation? Masked modeling!
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Motivations

e Recent works like MaskVLM and BEiT-3 adopt Masked Image and Language Modeling

in pretraining and achieve SOTA performance.

Masked Vision and Language Modeling
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(Kwon et al., 2022)

Computation-expensive: Models like CLIP,
ViLT have large scale parameters, making it
difficult to fine-tune the entire model on
specific downstream tasks.

Can we gain better unimodal representation in
a parameter-efficient way?



Motivations

e How to parameter-efficient fine-tune? With Adapter.

® Add a few trainable parameters on model. New tasks can be added without revisiting
previous ones.
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e Transfer: from trained unimodal adapter to
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fine-tune multi-modal tasks.
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Methods

e To retain the alignment advantages of CLIP, our architecture adopts it globally and
the pretrained weight is always frozen.

e To gain better unimodal representation, we add adapters on both CLIPVision and
CLIPText model doing MIM and MLM.

e To re-align image and text embeddings, while preserving unimodal features, we
freeze all current parameters and continue to add two new adapters for fine-tuning

on the downstream task.
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Experiments
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Pretrained model: CLIP.

Vision modality: Train LoRA Adapter + MIM on ImageNet-mini dataset.

Language modality: Train MAM Adapter + MLM on Bookcorpus dataset.
Multi-modality: Transfer these two trained V & L Adapters to Flickr-30k Image-Text
retrieval dataset.

Comparative Experiments: Adapters + MIM + MLM; Adapters + MIM; Adapters +
MLM; Only Adapters; Full Fine-tune CLIP (baseline).
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Trained on Unimodality

Vision: Adapter + MIM
Dataset Adapter Mask Ratio L1 Loss
ImageNet-mini LoRA 0.6 0.371
Language: Adapter + MLM
Dataset Adapter Mask Ratio Acc
Bookcorpus MAM 0.15 0.20

e Vision Adapter shows good performance on reconstruction loss.

e [anguage Adapter shows relatively low accuracy.
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Transfer Adapters to Multi-modality

4 Fine-tuned Text-to-Image Retrieval Image-to-Text Retrieval

Method p ¢
arameters R@1 R@5 R@10 R@1 R@5 R@10
Full Finetune 149M 78.42 94.98 97.66 92.4 98.7 99.6
CLIP+Adapter 12M 7836 | 9481 | 97.61 91.4 99.2 99.8
CLIP+Adapter
EMIMAMLM 14M 78.92 95.26 97.75 92.6 99.0 99.8

e (Compared to fine-tuning CLIP, Adapters can get the similar performance.

e Our approach outperforms directly fine-tuning with Adapters.
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Masked Modeling Comparison

Text-to-Image Retrieval

Method
R@1

Full Finetune 78.42

CLIP+Adapter

MM 78.70
CLIP+Adapter

+MLM 7.1
CLIP+Adapter
+MIM+MLM 78.92

R@5

94.98

94.84

95.31

95.26

R@10

97.66

97.69

97.74

97.75

Image-to-Text Retrieval

R@1 R@5 R@10

92.4 98.7 99.6
92.3 99.1 99.8
91.6 99.3 99.8
92.6 99.0 99.8

e Apply both MIM & MLM on Adapters achieves relatively better performance.

USC
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Future Work

Take a chance of one-stage method

o  Directly combine MIM and MLM into our current structure.

o  Find decent hyper-parameters to balance losses of MIM, MLM and alignment
Gain better unimodal representation

o  MLM only get 20% accuracy in BookCorpus

o More complex dataset, better data cleaning and preprocessing.

o Try some other pretrain tasks like classification, object detection to get more robust representation.
Better vision-text alignment

o Try our method on a more unified model like ViLT / shared weight encoders

More comparative experiments on downstream tasks using other datasets like COCO
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Thanks for Your Time!
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