Rethinking the Effectiveness of Masked Adapter: Can Unimodality Assist Multimodality?

CSCI-566: Deep Learning and Its Applications

Team: DODO Bird

Apr 21, 2023

Outline

- Motivations
- Overall Methods
- Experiments
- Future Work

 Prevalent multimodal models, like CLIP, have shown outstanding performance on multimodal tasks. However, since CLIP is only trained on image-text contrastive loss, it suffers from poor unimodal representation.

• With strengthened unimodal representation, we hypothesize the model can have a better

performance on multimodal tasks

Source: OpenAI CLIP (Radford et al., 2021)

• How to gain a better unimodal representation? Masked modeling!

Masked Image Modeling

Source: MAE (He et al., 2022)

Masked Language Modeling

Source: RoBERTa (Liu et al., 2019)

• Recent works like MaskVLM and BEiT-3 adopt Masked Image and Language Modeling in pretraining and achieve SOTA performance.

Masked Vision and Language Modeling

- Computation-expensive: Models like CLIP,
 ViLT have large scale parameters, making it
 difficult to fine-tune the entire model on
 specific downstream tasks.
- Can we gain better unimodal representation in a parameter-efficient way?

Source: MaskVLM (Kwon et al., 2022)

- How to parameter-efficient fine-tune? With Adapter.
- Add a few trainable parameters on model. New tasks can be added without revisiting previous ones.

- Add Adapters in CLIP: Compared to contrastive V-L learning, it get a better representation in unimodality.
- Transfer: from trained unimodal adapter to fine-tune multi-modal tasks.

Overall Methods

Structure

MaskVLM

BEiT-3

MS-CLIP

Methods

- To retain the alignment advantages of CLIP, our architecture adopts it globally and the pretrained weight is always frozen.
- To gain better unimodal representation, we add adapters on both CLIPVision and CLIPText model doing MIM and MLM.
- To re-align image and text embeddings, while preserving unimodal features, we freeze all current parameters and continue to add two new adapters for fine-tuning on the downstream task.

Experiments

Experiments

- Pretrained model: CLIP.
- Vision modality: Train LoRA Adapter + MIM on ImageNet-mini dataset.
- Language modality: Train MAM Adapter + MLM on Bookcorpus dataset.
- Multi-modality: Transfer these two trained V & L Adapters to Flickr-30k Image-Text retrieval dataset.
- Comparative Experiments: Adapters + MIM + MLM; Adapters + MIM; Adapters + MLM; Only Adapters; Full Fine-tune CLIP (baseline).

Trained on Unimodality

Vision: Adapter + MIM						
Dataset	Adapter	Mask Ratio	L1 Loss			
ImageNet-mini	LoRA	0.6	0.371			
Language: Adapter + MLM						
Dataset	Adapter	Mask Ratio	Acc			
Bookcorpus	MAM	0.15	0.20			

- Vision Adapter shows good performance on reconstruction loss.
- Language Adapter shows relatively low accuracy.

Transfer Adapters to Multi-modality

Method	# Fine-tuned Parameters	Text-to-Image Retrieval			Image-to-Text Retrieval		
		R@1	R@5	R@10	R@1	R@5	R@10
Full Finetune	149M	78.42	94.98	97.66	92.4	98.7	99.6
CLIP+Adapter	12M	78.36	94.81	97.61	91.4	99.2	99.8
CLIP+Adapter +MIM+MLM	14M	78.92	95.26	97.75	92.6	99.0	99.8

- Compared to fine-tuning CLIP, Adapters can get the similar performance.
- Our approach outperforms directly fine-tuning with Adapters.

Masked Modeling Comparison

Method	Text-to-Image Retrieval			Image-to-Text Retrieval		
	R@1	R@5	R@10	R@1	R@5	R@10
Full Finetune	78.42	94.98	97.66	92.4	98.7	99.6
CLIP+Adapter +MIM	78.70	94.84	97.69	92.3	99.1	99.8
CLIP+Adapter +MLM	79.1	95.31	97.74	91.6	99.3	99.8
CLIP+Adapter +MIM+MLM	78.92	95.26	97.75	92.6	99.0	99.8

• Apply both MIM & MLM on Adapters achieves relatively better performance.

Future Work

Future Work

- Take a chance of one-stage method
 - Directly combine MIM and MLM into our current structure.
 - Find decent hyper-parameters to balance losses of MIM, MLM and alignment
- Gain better unimodal representation
 - MLM only get 20% accuracy in BookCorpus
 - More complex dataset, better data cleaning and preprocessing.
 - Try some other pretrain tasks like classification, object detection to get more robust representation.
- Better vision-text alignment
 - Try our method on a more unified model like ViLT / shared weight encoders
- More comparative experiments on downstream tasks using other datasets like COCO

Thanks for Your Time!

CSCI-566: Deep Learning and Its Applications
Team: DODO Bird
Apr 21, 2023

